磁冷却法
发布:2015-09-09 10:08 点击:
将顺磁体放在装有低压氦气的容器内,通过低压氦气与液氦的接触而保持在1K左右的低温,加上磁场(量级为10^6A/m)使顺磁体磁化,磁化过程时放出的热量由液氦吸收,从而保证磁化过程是等温的。顺磁体磁化后,抽出低压氦气而使顺磁体绝热,然后准静态地使磁场减小到很小的值(一般为零)。
利用固体中的顺磁离子的绝热去磁效应可以产生1K以下至mK量级的低温。例如从0.5K出发,使硝酸铈镁绝热去磁可降温到2mK。当温度降到mK量级时,顺磁离子磁矩间的相互作用便不能忽略。磁矩间的相互作用相当于产生一个等效的磁场(大小约10^4~10^3A/m),使磁矩的分布有序化,这方法便不再有效。
核磁矩的大小约为原子磁矩的1/2000。因此核磁矩间的相互作用较顺磁离子间的相互作用要弱的多,利用核绝热去磁可以获得更低的温度
原理编辑
对于顺磁介质,ⅹ和K都是正数,磁介质的热容CH也是正数,故有
可见,绝热地减小磁场时,物质的温度将降低。这种现象叫做磁致冷效应。利用绝热去磁法获得低温,就是依据这一效应。因为在没有磁场时,各个磁活动性离子的角动量取向是混乱的,使得每摩尔分子的熵,除了点阵振动所引起的部分外,又增加了一部分。若将磁介质在温度保持一定的情况下放入强磁场中,磁场将使所有离子的角动量取能量较小的方向,因而减小了系统的熵,这时有热量ΔQ=ΔS/T流出磁介质。若再绝热地慢慢减小磁场,使整个过程为可逆过程,则系统的总熵保持不变,但过程中各离子角动量取向引起的熵增加到原来的值,所以与点阵振动相联系的那部分熵必然减小,结果物质被冷却。绝热去磁法是现代得到低温的有效方法,可以得到约0.001K的低温。
物质的点阵振动和磁矩取向都对系统的熵有贡献,如先在等温情形下加外磁场,物质被磁化,分子磁矩趋向于一致的排列,对熵的贡献减小,系统放出热量;然后在绝热条件下撤去外磁场,磁矩恢复为无规排列,相应的熵增加,但由于是绝热去磁,系统的总熵不变,磁矩的熵的增加是以点阵振动的熵的减少作代价,这导致物质的冷却。绝热去磁与绝热去极化一样可用来获得低温 。
应用编辑
基于“磁热效应”(MCE)的磁制冷是传统的蒸汽循环制冷技术的一种有希望的替代方法。在有这种效应的材料中,施加和除去一个外加磁场时磁动量的排列和随机化引起材料中温度的变化,这种变化可传递给环境空气中。Gd5Ge2Si2是其中一种所谓的巨型MCE材料,当在上个世纪90年代后期被发现时曾引起人们很大兴趣。该化合物作为制冷物质有一个缺点:当在该材料表现出大的磁热效应的温度范围内循环其磁化时,它会因磁滞现象而损失大量能量。但是现在,研究人员找到了克服这一问题的一个简单方法。只是通过添加少量铁,就可将磁滞现象减少90%,所获得的合金成为一种性能得到很大改善的制冷物质,可在接近室温的环境下应用。
- 上一篇:压力容器焊接的质量控制
- 下一篇:螺杆式制冷压缩机的检修方法